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SUMMARY. We propose a new Poisson method to estimate the variance for prevalence estimates obtained 
by the counting method described by Gail et al. (1999, Biometrics 55, 1137-1144) and to construct a 
confidence interval for the prevalence. We evaluate both the Poisson procedure and the procedure based 
on the bootstrap proposed by Gail et al. in simulated samples generated by resampling real data. These 
studies show that both variance estimators usually perform well and yield coverages of confidence intervals 
at nominal levels. When the number of disease survivors is very small, however, confidence intervals based 
on the Poisson method have supranominal coverage, whereas those based on the procedure of Gail et al. 
tend to have below-nominal coverage. For these reasons, we recommend the Poisson method, which also 
reduces the computational burden considerably. 
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1. Introduction 
Disease prevalence, the proportion of individuals in a popula- 
tion with a history of a particular disease at a point in time, is 
important for assessing the public health impact of the disease 
and to project medical care needs. Gail et al. (1999) described 
two general approaches for estimating disease prevalence us- 
ing registry data: the counting method and the transition rate 
method. They also developed variance estimators for these 
prevalence estimators. Their proposed variance estimator for 
the counting method obtains one component of the variance 
by a bootstrap procedure. We propose a computationally sim- 
pler Poisson method and compare its performance to that of 
the variance estimator given by Gail et al. in simulations based 
on data from the Surveillance, Epidemiology, and End Results 
(SEER) program at the National Cancer Institute (NCI). 

2. Methods 
2.1 Counting Method Prevalence Estimator 
Following Gail et al. (1999), we denote the age- and time- 
specific disease prevalence at calendar time s as x(c1, c2, 
a l ,  az ,  s ) ,  the probability that an individual who is alive 
at calendar time s and in the age range [al ,  a2) had disease 
incident in the age interval [ C ~ , C Z ) ,  where c1 5 a1 and 
c2 5 a2. Note that Gail et al. (1999) used the notation x(c1, 
cz, a ,  s )  because they estimated prevalence in the age range 
[a,  a + 1). Let ( t , x , d )  represent (calendar time at onset of 

disease, age at onset of disease, duration time from disease 
onset to calendar time s ) .  Denote the disease incidence 
intensity as a(t ,  x )  for an individual who has not previously 
been diagnosed with the disease at age x at calendar time 
t .  Assume that an individual who was diagnosed with the 
disease at calendar time t at age x is at risk of death with 
intensity X ( t ,  x + d ,  d )  at calendar time (t  + d).  Then 

d 

S(d ;  x ;  t )  = exp { - .I X(t, x + u, u)du 

is the probability that an individual who develops disease at 
age x and date t will survive beyond duration d after disease 
incidence. Hence, the prevalence 

4 C l ,  cz, a13 a21 8) 

= \ ' ( n l , a r - s ) - l ~ ~ ~ ~ n * ( x , s - w + x )  

x Q(S - w + 5,  x )  
x S(v  - x ;  x ;  s - v + x )  

X dZd71, (1) 

where n * ( x ,  t)dtdx is the number of individuals who are at 
risk of first developing disease at calendar time [t ,  t + d t )  and 
age [ z , x  + dz)  and N ( a l , a z , s )  is the number alive in the 
study population at calendar time s in the age range [al ,  a z ) .  
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The counting method obtains estimates of prevalence by 
dividing the estimated number of diseased persons by the 
study population size, taking loss to follow-up into account. 
Let X i  be the age at disease incidence for the i th case of a 
registry and Tt be the calendar time of the disease diagnosis 
for that case. Let Yz be the potential calendar time of death 
and Ui the potential calendar time at loss to follow-up for the 
i th case. Unless both Ui and Yz exceed s ,  we get to observe the 
minimum of Yz and Ui. Let I ( . )  present an indicator function 
equaling one when the argument is true and zero otherwise. 
The counting method prevalence estimator at calendar time 
s for (1) is (Gail et al., 1999) 

q c 1 ,  c2, a1, a2, .) 
= N(a1, a2, s)-' 

r 

a1 5 X i  + s - Ti < a2) 

a1 5 xi + s - Ti < a2)) 

S(s - Ti; xi; Ti) 
S(U2 - Ti; xi; Ti) 

X 

where summations are over all disease cases in the registry 
and S(d; X ;  2') is an estimator of S(d; X ;  T ) .  
2.2 Gail's Bootstrap Variance Estimator 
Let M be the number of incident cases diagnosed in the 
age range [c1,c2) who would be in the $ge range [al,a2) at 
calendar time s if they survived and let EM be the estimated 
proportion of such cases who were alive at s. In particular, 
M& is the term in square brackets in equation (2). Assume 
that M follows a Poisson distribution. As M increases, <M 
converges to E and Mvar(&) tends to the limiting variance 
g2, say. Gail et al. (1999) derived 

var{ir(c1,~2,a1,a2,s)} = N ( a i , a 2 , ~ ) - ~ M  [c2 + E 2 ]  . (3) 

They estimated var{+(cl , c2, a1 , a2, s ) }  by substituting i~ for 
6 and obtaining a bootstrap estimate of var(EM) = a2/M. To 
reduce the computational burden, Gail et al. (1999) described 
how 02/M could be estimated from bootstrap resampling of 
samples of size m < M cases. 
2.3 Proposed Method Based on a Poisson Approximation 
Suppose that we use the method of Kaplan and Meier (1958) 
to estimate the survival functions S(d; X ;  T )  separately within 
strata defined by demographic and disease-related variables 
(e.g., age at diagnosis, year of diagnosis, gender, race, and 
stage of disease). Suppose that all cases in a stratum have a 
common unknown survival distribution and that there are K 
such strata. Let di = s - Ti denote the duration time from 
diagnosis to prevalence time and mi = Ui - Ti denote the 
duration of survival from diagnosis to loss to follow-up. We 
reexpress equation (2) as 

A(c1, c2, al, a2, s )  

where A is the first sum in equation (2), i.e., the number of 
cases diagnosed in the age interval [q, c2) who were known 
to be alive and in the age interval [al, "2) at calendar time s, 
where the second sum in equation (4) is over all L = CFE1 Nk 
patients lost to follow-up before s ,  and where Nk is the 
number of cases in stratum k who are lost to follow-up. To 
be precise, L = C{I(cl 5 Xi < c2,Ui < yZ,s > Ui,al 5 

estimate the probability Sk(di 1 mi) that patient i will survive 
at least a duration di beyond cancer incidence (and therefore 
be alive at calendar time s )  given that patient was diagnosed 
at calendar time Ti and lost t o  follow-up at calendar time 
(Ti+mi). Hence, C:=(=, C z l  Sk(di I mi), hereafter denoted by 
B, is the estimated number of patients alive at calendar time s 
among those lost to follow-up. Note that the variables X i  and 
Ti are not included in Sk(di I mi) because we assume, without 
loss of generality, that X i  and Ti are stratification variables 
that are used in determining the stratum index k .  Our task is 
to estimate the variance of ir(c1, c2, al ,  a2, s )  given by (4) and 
to construct a 95% confidence interval for the prevalence. 

For rare diseases, A and {Nk} are approximately 
independent Poisson variables (Haberman, 1978; Brillinger, 
1986; Keiding, 1991). Consider the contribution B k  = 

x z l  Sk(di I mi) = czl&i from stratum k.  Assume the 
quantities p k i  are i.i.d. with mean pk and are independent of 
Nk, which has mean &. Then E(Bk) = E(Nk)pk = Xkpk and 

xi S - Ti < az)}. we U s e  Sk(di I mi) = Sk(di)/Sk(mi) to 

Thus, B k  is underdispersed compared with a Poisson variable 
with mean &pk. This suggests that regarding A + B 
A + Ckzf B k  as Poisson with mean estimated as A + 
B will yield confidence intervals on T ( c ~ ,  c2, al,a2, s )  with 
coverage at or above nominal levels. A positive correlation 
between A and B would increase the variance, but simulations 
indicate the correlations are small (Section 3). For large 
numbers of events NI,  in each stratum, however, this Poisson 
distribution for B k  becomes more accurate because B k  is 
stochastically equivalent t o  B; = x z l  z k i ,  where zki are 
independent Bernoulli variates with means pki .  Standard 
moment-generating function arguments show that B; is a 
Poisson variable with mean &Pk. Hence, we anticipate that 
regarding A + B as Poisson with estimated mean A + B will 
yield confidence intervals on ~ ( c 1 ,  c2, a1 , a2, s )  with nominal 
coverage with large Nk. 

To construct a confidence interval on ~ ( c 1 ,  c2, al ,  a2, s ) ,  
we rely on the well-known relationships between the Poisson 
distribution and the chi-square distribution (Johnson and 
Kotz, 1969) to obtain lower ( T L )  and upper (nu) 1 - cy level 
limits as 

In this equation, a +  b is the observed value of A+ B and xxp 
is the pth quantile of the chi-square distribution with f d.f., 
where f may be noninteger. 
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2.4 Adaptation for  a Definition of Prevalence Based on 

Cases contributing to the prevalence 7r(clr c2, a l ,  a2, s) are 
those who developed the disease between age c1 and cz and 
were aged [a l ,a2)  at calendar time s (Section 2.1). It is also 
possible to define the eligible cases as those whose disease 
developed within T E [ T I ,  7 2 )  years before s and who were 
aged [a1,a2) at s. Using this definition of eligible cases, 
one could define a prevalence T ( T ~ ,  T Z ,  a1 , a2 , s) analogous 
to 7r(c1, c2, a1 , a2, s). To estimate 7 r ( q  , 7-2, a l ,  a2, s) by the 
counting method, one modifies equation (2) by replacing 
the condition c1 5 X i  < c2 by r1 5 s - Ti < r2. The 
methods in Sections 2.2 and 2.3 can be used with this 
modification, as in the examples and simulations. These two 
definitions of prevalence are not the same because the eligible 
cases differ somewhat, as can be appreciated by drawing the 
corresponding parallelograms in Figure 1 of Gail et al. (1999). 

More specifically, the interval T between date of diagnosis 
and prevalence time s, age a at s, and the age c at disease 
diagnosis are linearly dependent: a = c + r. Because a1 and 
a2 are determined by the age grouping of the (available) 
population data at s, we specify either r1 and 72 or c1 
and c2, depending on the aims of the study. For example, 
for the prevalence of childhood cancer survivors, we specify 
c1 and c2 as ages that define childhood. Thus, only the 
patients who were diagnosed at age c E [ c ~ , c z )  will be 
eligible to be included in the calculation. From the linear 
dependency, we know that these eligible childhood cancer 
cases were diagnosed within r years before s, where T E [a1 - 
cz,a2 - c1) and r 2 0. In contrast, in the T(71,72,a1,a2,s) 
specification, only patients who were diagnosed within r 
years before s will be the eligible cases, where T E [ T I , T ~ ) ;  

and the linear dependency dictates that these eligible cases 
were diagnosed at age c E [a1 - 72,a2 - 71) for all c 2 0. 
Therefore, the only difference between the r (c1 ,  c2, a l ,  az ,  s) 
and the T(71 ,  ~ 2 ,  ul ,  u2, s )  specifications is the determination 
of inclusion of eligible cases, which does affect the definition 
of prevalence. 

3. Examples and Simulations 
As an illustration, age-specific cancer prevalences and their 
variance estimates were calculated using population-based 
cancer registry data collected by the SEER Program at the 
NCI. Based on the 1990 census data, the SEER program 
covers about 14% of the U.S. population (see www.seer. 
cancer.gov for detailed information). We used 24 age-specific 
datasets (Table 1) of breast and brain cancers diagnosed in 
the original nine SEER geographic areas between 1987 and 
1996. As pointed out by Gail et al. (1999), the survival 
distribution following breast cancer incidence is relatively 
favorable and the incidence rate is relatively high, whereas 
the survival distribution following brain cancer incidence is 
relatively unfavorable and the incidence rate is low. We used 
a single stratum to estimate S(d;  2; t )  (i.e., K = 1). For the 
procedure of Gail et al. (1999), we randomly sampled a subset 
of size m = 500 cases with replacement from the original M 
cases for each bootstrap. We used B = 100 repetitions to 
estimate 2 in (3). 

We also evaluate the performance of the Poisson procedure 
and the Gail estimator in realistic simulated samples obtained 
by resampling the data in Table 1. For each of the 24 data 

Calendar Year of Diagnosas 
sets in Table 1, we resampled 500 data sets with replacement, 
assuming that the number of incident cancers follows a 
Poisson distribution. More specifically, for each of the 24 
settings, the following steps were used to generate 500 
independent simulated data sets: 

(1) Generate M ,  the number of incident cases from a 
Poisson random variable with mean equal to the 
observed number of cases in the original data set. 

(2) Resample M incident cases with replacement from the 
original cases. 

(3) Repeat steps (1) and (2) 500 times to generate 500 
data sets. 

For each of the 500 simulations, we calculated i, vYr(?) 
from the Gail estimator (3) and from the Poisson approxima- 
tion ( A  + B ) / { N ( a l , a 2 , s ) } 2 ,  and 95% confidence intervals 
based on equation (5) and on the normal approximation in 
the Gail method. From the 500 simulations, we calculated 
the mean of 7i, the standard error (SE) of i, the mean of 
the estimates of standard error corresponding to the variance 
estimates above, the empirical coverages of the confidence 
intervals, namely, the percentage of times the confidence 
intervals included the +O obtained from the original data, and 
the correlation coefficient between A and B. All simulations 
and computations were performed in SAS (SAS Institute, 
Cary, North Carolina). 

Table 1 presents results for the estimated prevalences on 
January 1, 1997 (T I  = O , r 2  = ll), from the original and 
simulated data sets. The examples cover a wide range of 
estimated prevalences, numbers of incident cases, numbers 
of cases lost before the date of prevalence estimation, and 
percentages lost. For example, among black women aged <55 
years, 236/(236 + 2855) = 7.6% were lost compared with 
2/(2 + 4) = 33% of black males aged 65-74 with brain cancer 
(Table 1). Estimates of prevalence per 100,000 persons ranged 
from 3175 for breast cancer in white women aged 275 years to 
6 for black men with brain cancer aged 275 years. Estimates 
of SE(?) from the Poisson method and from the Gail method 
(3) agreed well in most cases in the original data. 

In simulations, the average estimates of SE(i)  from the 
two methods also agreed well with each other and with the 
empirical standard error estimate of ? (Table 1). It is note- 
worthy, however, that the average estimate from the Poisson 
method exceeded that from the Gail method in 22 of the 24 
settings examined, as suggested by the discussion of underdis- 
persion in Section 2. The average estimated standard errors 
were within 0.01 units of each other in the two remaining 
cases. 

In most cases, the estimated coverages of both methods fell 
within the interval (93.1%, 96.9%) that would be expected 
to include 95% of coverage estimates if the procedures had 
nominal 95% levels. In fact, the bootstrap method of Gail et 
al. (1999) yielded coverages in that range except for three age 
groups of black men with brain cancer, for whom the numbers 
of survivors were very small. The coverages were subnominal 
in these cases, and there is a suggestion of slight subnominal 
coverage for black women with brain cancer, for whom the 
numbers of survivors were again very small. In these cases, 
the coverage of the Poisson confidence interval exceeded the 
nominal level (i.e., was conservative). Note that the coverage 



Variance o,f Disease-Prevalence Estimates 687 

Table 1 
Estimated prevalence with standard errors on January 1, 1997, of breast and brain cancers diagnosed in the previous 10 
years and simulated results on the average estimated standard errors and on coverage of the 95% confidence intervals 

~ Original observed data Simulat ionsa 
Race 

Estimated SE SE of it Coverage (%) gender, Estimated 
cancer, prevalenceb Gail Poisson Mean Mean Gail Poisson 

age AIL" i t0  method method Empirical Gail Poisson method method 

Black female breast cancer 
<55 28551236 
55-64 1482194 
65-74 1519148 
275 1253143 

White female breast cancer 
<55 2363312124 
55-64 1733311161 
65-74 223031476 
275 238741613 

Black female brain cancer 
<55 109117 
55-64 1411 
65-74 711 
275 910 

White female brain cancer 
<55 12201191 
55-64 169119 
65-74 12418 
275 7717 

<55 134131 
Black male brain cancer 

55-64 1310 
65-74 412 
275 210 

White male brain cancer 
<55 16761214 
55-64 199116 
65-74 14717 
275 5114 

237 4.33 
1624 41.54 
2097 51.63 
2271 63.11 

329 1.98 
2226 16.50 
2999 19.60 
3175 19.57 

10 0.88 
15 3.70 
10 3.45 
16 4.78 

18 0.50 
22 1.62 
17 1.63 
10 1.15 

13 1.06 
17 5.12 
7 3.45 
6 4.30 

23 0.55 
27 1.93 
24 1.81 
12 1.59 

4.28 
41.16 
53.10 
63.30 

2.06 
16.40 
19.89 
20.34 

0.86 
3.90 
3.71 
5.29 

0.48 
1.62 
1.49 
1.16 

1.05 
4.77 
3.58 
4.34 

0.54 
1.84 
1.95 
1.62 

4.21 
39.26 
53.38 
64.28 

2.09 
16.09 
20.49 
20.68 

0.88 
3.64 
3.70 
5.16 

0.48 
1.68 
1.48 
1.11 

1.09 
4.89 
3.43 
4.19 

0.56 
1.89 
1.96 
1.60 

4.28 
40.90 
52.52 
62.61 

2.06 
16.23 
19.60 
19.98 

0.87 
3.87 
3.62 
5.14 

0.48 
1.62 
1.48 
1.16 

1.06 
4.75 
3.38 
3.89 

0.54 
1.84 
1.95 
1.61 

4.28 
41.20 
53.06 
63.37 

2.06 
16.40 
19.89 
20.33 

0.87 
3.88 
3.66 
5.19 

0.48 
1.62 
1.49 
1.16 

1.05 
4.76 
3.40 
3.90 

0.54 
1.84 
1.94 
1.62 

95.2 
95.2 
94.4 
94.8 

95.4 
95.4 
93.2 
95.0 

94.6 
93.4 
93.6 
93.8 

95.8 
94.4 
93.6 
95.6 

94.0 
92.4 
90.4 
87.8 

94.2 
93.8 
94.2 
96.2 

95.4 
95.6 
94.8 
94.6 

95.8 
95.8 
94.0 
95.0 

95.8 
98.0 
97.0 
95.2 

95.4 
94.4 
94.8 
97.6 

95.0 
96.8 
97.8 
98.8 

94.4 
95.0 
96.0 
97.4 

Based on 500 independent simulations for each row of the table. The empirical SE is the standard error of .ir in the 500 simulations, 
whereas Mean Gail and Mean Poisson denote the average estimated SE. The coverage is the percentage of times in 500 simulations that 
the confidence interval included the true to obtained from the original data. The nominal level of these confidence intervals is 95%. 

Prevalence per IOO,OOO persons. 
Number of cases alive at the end of follow-up, A,  and number of cmes lost before the end of follow-up, L. 

of the Poisson confidence intervals exceeded those of the Gail 
method in 20 of the 22 untied cases (Table 1) despite the fact 
that standard errors from the two methods were very similar. 
Thus, the higher coverage of the Poisson method may reflect 
skewness in the Poisson model for the prevalence distribution 
with low prevalence in addition to slightly larger variance. 

The correlation coefficients between A and B ranged from 
-0.09 to 0.10, with most being near zero (data not shown). To 
determine if similar results obtained with more severe loss to 
follow-up, we also used data sets that have nearly double the 
percentage of loss to follow-up seen in Table 1. Results very 
similar to those in Table 1 were obtained (data not shown). 

4. Discussion 
Both the Gail method and the Poisson method performed well 
in realistic simulations whenever the numbers of survivors ex- 
ceeded 10. The Poisson method had the advantage of having 
coverage equaling or exceeding nominal levels when the num- 
bers of survivors were small, whereas the procedure of Gail 
et al. had subnominal coverage in this circumstance. In ad- 
dition, the Poisson method reduced the computational bur- 
den considerably by avoiding the bootstrap procedure used 
by Gail et al. This is an advantage for applications requir- 
ing annual evaluation of prevalence in multiple subgroups in 
a database with millions of cases. Thus, we recommend the 
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Poisson method and are planning to incorporate it into pub- 
lic software (SEER*STAT) for analysis of registry data (see 
www.seer.cancer.gov). 
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RE SUM^ 
Nous proposons une nouvelle mkthode poissonienne pour es- 
timer la variance d’estimations de prevalence par la mhthode 
de comptage dkcrite par Gail et al. (1999) et pour construire 
un intervalle de confiance de la prkvalence. Nous kvaluons si- 
multankment la procedure poissonienne et la procedure baske 
sur la mkthode bootstrap proposke par Gail et a,l. sur des 
kchantillons simulks engendrCs en rkkchantillonnant des 
donnkes rkelles. Ces ktudes montrent qu’8 la fois la variance 
des estimateurs est gknkralement bonne et fournit un recou- 
vrement des intervalles de confiance aux niveaux nominaux. 
Quand le nombre de survivants d’une maladie est trks faible, 
cependant, les intervalles de confiance bases sur la mCthode 
poissonienne a un recouvrement supkrieur au niveau nominal, 
alors que pour ceux bas& sur la prockdure de Gail et al. il est 

infkrieur. Pour ces raisons, nous recommandons la mkthode 
poissonienne, qui rkduit aussi la charge de calcul. 
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